(a) Let a < b, c > 0, f a function that is integrable on [ca, cb]. Use the definition of integral to prove that $\int_{ca}^{cb} f(x) dx = c \int_{a}^{b} f(cx) dx$. *Hint:* a partition $x_0 < x_1 < \cdots < x_n$ of [a, b] induces a partition $cx_0 < cx_1 < \cdots < cx_n$ of [ca, cb] and conversely. (b) Assuming that a disk of radius 1 has area π , prove that the area enclosed by the ellipse $x^2/a^2 + y^2/b^2 = 1$ is πab .