(a) Let $a<b, c>0, f$ a function that is integrable on $[c a, c b]$. Use the definition of integral to prove that $\int_{c a}^{c b} f(x) \mathrm{d} x=c \int_{a}^{b} f(c x) \mathrm{d} x$. Hint: a partition $x_{0}<x_{1}<\cdots<x_{n}$ of $[a, b]$ induces a partition $c x_{0}<c x_{1}<\cdots<c x_{n}$ of $[c a, c b]$ and conversely.
(b) Assuming that a disk of radius 1 has area π, prove that the area enclosed by the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $\pi a b$.

